Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Sci Rep ; 14(1): 9515, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664464

Stroke, a major global health concern often rooted in cardiac dynamics, demands precise risk evaluation for targeted intervention. Current risk models, like the CHA 2 DS 2 -VASc score, often lack the granularity required for personalized predictions. In this study, we present a nuanced and thorough stroke risk assessment by integrating functional insights from cardiac magnetic resonance (CMR) with patient-specific computational fluid dynamics (CFD) simulations. Our cohort, evenly split between control and stroke groups, comprises eight patients. Utilizing CINE CMR, we compute kinematic features, revealing smaller left atrial volumes for stroke patients. The incorporation of patient-specific atrial displacement into our hemodynamic simulations unveils the influence of atrial compliance on the flow fields, emphasizing the importance of LA motion in CFD simulations and challenging the conventional rigid wall assumption in hemodynamics models. Standardizing hemodynamic features with functional metrics enhances the differentiation between stroke and control cases. While standalone assessments provide limited clarity, the synergistic fusion of CMR-derived functional data and patient-informed CFD simulations offers a personalized and mechanistic understanding, distinctly segregating stroke from control cases. Specifically, our investigation reveals a crucial clinical insight: normalizing hemodynamic features based on ejection fraction fails to differentiate between stroke and control patients. Differently, when normalized with stroke volume, a clear and clinically significant distinction emerges and this holds true for both the left atrium and its appendage, providing valuable implications for precise stroke risk assessment in clinical settings. This work introduces a novel framework for seamlessly integrating hemodynamic and functional metrics, laying the groundwork for improved predictive models, and highlighting the significance of motion-informed, personalized risk assessments.


Heart Atria , Hemodynamics , Hydrodynamics , Stroke , Humans , Stroke/physiopathology , Female , Male , Heart Atria/physiopathology , Heart Atria/diagnostic imaging , Middle Aged , Risk Assessment/methods , Aged , Computer Simulation , Models, Cardiovascular , Magnetic Resonance Imaging, Cine/methods
2.
NPJ Digit Med ; 7(1): 90, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605089

Cardiac digital twins provide a physics and physiology informed framework to deliver personalized medicine. However, high-fidelity multi-scale cardiac models remain a barrier to adoption due to their extensive computational costs. Artificial Intelligence-based methods can make the creation of fast and accurate whole-heart digital twins feasible. We use Latent Neural Ordinary Differential Equations (LNODEs) to learn the pressure-volume dynamics of a heart failure patient. Our surrogate model is trained from 400 simulations while accounting for 43 parameters describing cell-to-organ cardiac electromechanics and cardiovascular hemodynamics. LNODEs provide a compact representation of the 3D-0D model in a latent space by means of an Artificial Neural Network that retains only 3 hidden layers with 13 neurons per layer and allows for numerical simulations of cardiac function on a single processor. We employ LNODEs to perform global sensitivity analysis and parameter estimation with uncertainty quantification in 3 hours of computations, still on a single processor.

3.
Sci Rep ; 14(1): 8304, 2024 04 09.
Article En | MEDLINE | ID: mdl-38594376

Impaired cardiac function has been described as a frequent complication of COVID-19-related pneumonia. To investigate possible underlying mechanisms, we represented the cardiovascular system by means of a lumped-parameter 0D mathematical model. The model was calibrated using clinical data, recorded in 58 patients hospitalized for COVID-19-related pneumonia, to make it patient-specific and to compute model outputs of clinical interest related to the cardiocirculatory system. We assessed, for each patient with a successful calibration, the statistical reliability of model outputs estimating the uncertainty intervals. Then, we performed a statistical analysis to compare healthy ranges and mean values (over patients) of reliable model outputs to determine which were significantly altered in COVID-19-related pneumonia. Our results showed significant increases in right ventricular systolic pressure, diastolic and mean pulmonary arterial pressure, and capillary wedge pressure. Instead, physical quantities related to the systemic circulation were not significantly altered. Remarkably, statistical analyses made on raw clinical data, without the support of a mathematical model, were unable to detect the effects of COVID-19-related pneumonia in pulmonary circulation, thus suggesting that the use of a calibrated 0D mathematical model to describe the cardiocirculatory system is an effective tool to investigate the impairments of the cardiocirculatory system associated with COVID-19.


COVID-19 , Cardiovascular System , Humans , Reproducibility of Results , Pulmonary Circulation , Models, Theoretical
4.
Transl Pediatr ; 13(1): 146-163, 2024 Jan 29.
Article En | MEDLINE | ID: mdl-38323181

Background and Objective: Computational models of the cardiovascular system allow for a detailed and quantitative investigation of both physiological and pathological conditions, thanks to their ability to combine clinical-possibly patient-specific-data with physical knowledge of the processes underlying the heart function. These models have been increasingly employed in clinical practice to understand pathological mechanisms and their progression, design medical devices, support clinicians in improving therapies. Hinging upon a long-year experience in cardiovascular modeling, we have recently constructed a computational multi-physics and multi-scale integrated model of the heart for the investigation of its physiological function, the analysis of pathological conditions, and to support clinicians in both diagnosis and treatment planning. This narrative review aims to systematically discuss the role that such model had in addressing specific clinical questions, and how further impact of computational models on clinical practice are envisaged. Methods: We developed computational models of the physical processes encompassed by the heart function (electrophysiology, electrical activation, force generation, mechanics, blood flow dynamics, valve dynamics, myocardial perfusion) and of their inherently strong coupling. To solve the equations of such models, we devised advanced numerical methods, implemented in a flexible and highly efficient software library. We also developed computational procedures for clinical data post-processing-like the reconstruction of the heart geometry and motion from diagnostic images-and for their integration into computational models. Key Content and Findings: Our integrated computational model of the heart function provides non-invasive measures of indicators characterizing the heart function and dysfunctions, and sheds light on its underlying processes and their coupling. Moreover, thanks to the close collaboration with several clinical partners, we addressed specific clinical questions on pathological conditions, such as arrhythmias, ventricular dyssynchrony, hypertrophic cardiomyopathy, degeneration of prosthetic valves, and the way coronavirus disease 2019 (COVID-19) infection may affect the cardiac function. In multiple cases, we were also able to provide quantitative indications for treatment. Conclusions: Computational models provide a quantitative and detailed tool to support clinicians in patient care, which can enhance the assessment of cardiac diseases, the prediction of the development of pathological conditions, and the planning of treatments and follow-up tests.

5.
Nat Commun ; 15(1): 1834, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38418469

Predicting the evolution of systems with spatio-temporal dynamics in response to external stimuli is essential for scientific progress. Traditional equations-based approaches leverage first principles through the numerical approximation of differential equations, thus demanding extensive computational resources. In contrast, data-driven approaches leverage deep learning algorithms to describe system evolution in low-dimensional spaces. We introduce an architecture, termed Latent Dynamics Network, capable of uncovering low-dimensional intrinsic dynamics in potentially non-Markovian systems. Latent Dynamics Networks automatically discover a low-dimensional manifold while learning the system dynamics, eliminating the need for training an auto-encoder and avoiding operations in the high-dimensional space. They predict the evolution, even in time-extrapolation scenarios, of space-dependent fields without relying on predetermined grids, thus enabling weight-sharing across query-points. Lightweight and easy-to-train, Latent Dynamics Networks demonstrate superior accuracy (normalized error 5 times smaller) in highly-nonlinear problems with significantly fewer trainable parameters (more than 10 times fewer) compared to state-of-the-art methods.

6.
bioRxiv ; 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38293150

Stroke, a major global health concern often rooted in cardiac dynamics, demands precise risk evaluation for targeted intervention. Current risk models, like the CHA2DS2-VASc score, often lack the granularity required for personalized predictions. In this study, we present a nuanced and thorough stroke risk assessment by integrating functional insights from cardiac magnetic resonance (CMR) with patient-specific computational fluid dynamics (CFD) simulations. Our cohort, evenly split between control and stroke groups, comprises eight patients. Utilizing CINE CMR, we compute kinematic features, revealing smaller left atrial volumes for stroke patients. The incorporation of patient-specific atrial displacement into our hemodynamic simulations unveils the influence of atrial compliance on the flow fields, emphasizing the importance of LA motion in CFD simulations and challenging the conventional rigid wall assumption in hemodynamics models. Standardizing hemodynamic features with functional metrics enhances the differentiation between stroke and control cases. While standalone assessments provide limited clarity, the synergistic fusion of CMR-derived functional data and patient-informed CFD simulations offers a personalized and mechanistic understanding, distinctly segregating stroke from control cases. Specifically, our investigation reveals a crucial clinical insight: normalizing hemodynamic features based on ejection fraction fails to differentiate between stroke and control patients. Differently, when normalized with stroke volume, a clear and clinically significant distinction emerges and this holds true for both the left atrium and its appendage, providing valuable implications for precise stroke risk assessment in clinical settings. This work introduces a novel framework for seamlessly integrating hemodynamic and functional metrics, laying the groundwork for improved predictive models, and highlighting the significance of motion-informed, personalized risk assessments.

7.
BMC Bioinformatics ; 24(1): 389, 2023 Oct 13.
Article En | MEDLINE | ID: mdl-37828428

BACKGROUND: Simulating the cardiac function requires the numerical solution of multi-physics and multi-scale mathematical models. This underscores the need for streamlined, accurate, and high-performance computational tools. Despite the dedicated endeavors of various research teams, comprehensive and user-friendly software programs for cardiac simulations, capable of accurately replicating both normal and pathological conditions, are still in the process of achieving full maturity within the scientific community. RESULTS: This work introduces [Formula: see text]-ep, a publicly available software for numerical simulations of the electrophysiology activity of the cardiac muscle, under both normal and pathological conditions. [Formula: see text]-ep employs the monodomain equation to model the heart's electrical activity. It incorporates both phenomenological and second-generation ionic models. These models are discretized using the Finite Element method on tetrahedral or hexahedral meshes. Additionally, [Formula: see text]-ep integrates the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, previously released in Africa et al., 2023, within [Formula: see text]-fiber. As an alternative, users can also choose to import myofibers from a file. This paper provides a concise overview of the mathematical models and numerical methods underlying [Formula: see text]-ep, along with comprehensive implementation details and instructions for users. [Formula: see text]-ep features exceptional parallel speedup, scaling efficiently when using up to thousands of cores, and its implementation has been verified against an established benchmark problem for computational electrophysiology. We showcase the key features of [Formula: see text]-ep through various idealized and realistic simulations conducted in both normal and pathological scenarios. Furthermore, the software offers a user-friendly and flexible interface, simplifying the setup of simulations using self-documenting parameter files. CONCLUSIONS: [Formula: see text]-ep provides easy access to cardiac electrophysiology simulations for a wide user community. It offers a computational tool that integrates models and accurate methods for simulating cardiac electrophysiology within a high-performance framework, while maintaining a user-friendly interface. [Formula: see text]-ep represents a valuable tool for conducting in silico patient-specific simulations.


Electrophysiologic Techniques, Cardiac , Software , Humans , Computer Simulation , Myocardium , Africa
8.
Int J Numer Method Biomed Eng ; 39(12): e3767, 2023 Dec.
Article En | MEDLINE | ID: mdl-37615375

A major challenge in the computational fluid dynamics modeling of the heart function is the simulation of isovolumetric phases when the hemodynamics problem is driven by a prescribed boundary displacement. During such phases, both atrioventricular and semilunar valves are closed: consequently, the ventricular pressure may not be uniquely defined, and spurious oscillations may arise in numerical simulations. These oscillations can strongly affect valve dynamics models driven by the blood flow, making unlikely to recovering physiological dynamics. Hence, prescribed opening and closing times are usually employed, or the isovolumetric phases are neglected altogether. In this article, we propose a suitable modification of the Resistive Immersed Implicit Surface (RIIS) method (Fedele et al., Biomech Model Mechanobiol 2017, 16, 1779-1803) by introducing a reaction term to correctly capture the pressure transients during isovolumetric phases. The method, that we call Augmented RIIS (ARIIS) method, extends the previously proposed ARIS method (This et al., Int J Numer Methods Biomed Eng 2020, 36, e3223) to the case of a mesh which is not body-fitted to the valves. We test the proposed method on two different benchmark problems, including a new simplified problem that retains all the characteristics of a heart cycle. We apply the ARIIS method to a fluid dynamics simulation of a realistic left heart geometry, and we show that ARIIS allows to correctly simulate isovolumetric phases, differently from standard RIIS method. Finally, we demonstrate that by the new method the cardiac valves can open and close without prescribing any opening/closing times.


Aortic Valve , Models, Cardiovascular , Aortic Valve/physiology , Hemodynamics/physiology , Computer Simulation
9.
Sci Rep ; 13(1): 14220, 2023 08 30.
Article En | MEDLINE | ID: mdl-37648701

The aim of this paper is to introduce a new mathematical model that simulates myocardial blood perfusion that accounts for multiscale and multiphysics features. Our model incorporates cardiac electrophysiology, active and passive mechanics, hemodynamics, valve modeling, and a multicompartment Darcy model of perfusion. We consider a fully coupled electromechanical model of the left heart that provides input for a fully coupled Navier-Stokes-Darcy Model for myocardial perfusion. The fluid dynamics problem is modeled in a left heart geometry that includes large epicardial coronaries, while the multicompartment Darcy model is set in a biventricular myocardium. Using a realistic and detailed cardiac geometry, our simulations demonstrate the biophysical fidelity of our model in describing cardiac perfusion. Specifically, we successfully validate the model reliability by comparing in-silico coronary flow rates and average myocardial blood flow with clinically established values ranges reported in relevant literature. Additionally, we investigate the impact of a regurgitant aortic valve on myocardial perfusion, and our results indicate a reduction in myocardial perfusion due to blood flow taken away by the left ventricle during diastole. To the best of our knowledge, our work represents the first instance where electromechanics, hemodynamics, and perfusion are integrated into a single computational framework.


Heart , Myocardium , Reproducibility of Results , Perfusion , Heart Ventricles
10.
J Physiol ; 2023 Aug 28.
Article En | MEDLINE | ID: mdl-37641426

Mechano-electric regulations (MER) play an important role in the maintenance of cardiac performance. Mechano-calcium and mechano-electric feedback (MCF and MEF) pathways adjust the cardiomyocyte contractile force according to mechanical perturbations and affects electro-mechanical coupling. MER integrates all these regulations in one unit resulting in a complex phenomenon. Computational modelling is a useful tool to accelerate the mechanistic understanding of complex experimental phenomena. We have developed a novel model that integrates the MER loop for human atrial cardiomyocytes with proper consideration of feedforward and feedback pathways. The model couples a modified version of the action potential (AP) Koivumäki model with the contraction model by Quarteroni group. The model simulates iso-sarcometric and isometric twitches and the feedback effects on AP and Ca2+ -handling. The model showed a biphasic response of Ca2+ transient (CaT) peak to increasing pacing rates and highlights the possible mechanisms involved. The model has shown a shift of the threshold for AP and CaT alternans from 4.6 to 4 Hz under post-operative atrial fibrillation, induced by depressed SERCA activity. The alternans incidence was dependent on a chain of mechanisms including RyRs availability time, MCF coupling, CaMKII phosphorylation, and the stretch levels. As a result, the model predicted a 10% slowdown of conduction velocity for a 20% stretch, suggesting a role of stretch in creation of substrate formation for atrial fibrillation. Overall, we conclude that the developed model provides a physiological CaT followed by a physiological twitch. This model can open pathways for the future studies of human atrial electromechanics. KEY POINTS: With the availability of human atrial cellular data, interest in atrial-specific model integration has been enhanced. We have developed a detailed mathematical model of human atrial cardiomyocytes including the mechano-electric regulatory loop. The model has gone through calibration and evaluation phases against a wide collection of available human in-vitro data. The usefulness of the model for analysing clinical problems has been preliminaryly tested by simulating the increased incidence of Ca2+ transient and action potential alternans at high rates in post-operative atrial fibrillation condition. The model determines the possible role of mechano-electric feedback in alternans incidence, which can increase vulnerability to atrial arrhythmias by varying stretch levels. We found that our physiologically accurate description of Ca2+ handling can reproduce many experimental phenomena and can help to gain insights into the underlying pathophysiological mechanisms.

11.
Int J Bioprint ; 9(4): 741, 2023.
Article En | MEDLINE | ID: mdl-37323497

3D bioprinting is a novel promising solution for living tissue fabrication, with several potential advantages in many different applicative sectors. However, the implementation of complex vascular networks remains as one of the limiting factors for the production of complex tissues and for bioprinting scale-up. In this work, a physics-based computational model is presented to describe nutrients diffusion and consumption phenomena in bioprinted constructs. The model-a system of partial differential equations that is approximated by means of the finite element method- allows for the description of cell viability and proliferation, and it can be easily adapted to different cell types, densities, biomaterials, and 3D-printed geometries, thus allowing a preassessment of cell viability within the bioprinted construct. The experimental validation is performed on bioprinted specimens to assess the ability of the model to predict changes in cell viability. The proposed model constitutes a proof of concept of digital twinning of biofabricated constructs that can be suitably included in the basic toolkit for tissue bioprinting.

12.
Infect Dis Model ; 8(3): 672-703, 2023 Sep.
Article En | MEDLINE | ID: mdl-37346476

In the context of SARS-CoV-2 pandemic, mathematical modelling has played a fundamental role for making forecasts, simulating scenarios and evaluating the impact of preventive political, social and pharmaceutical measures. Optimal control theory represents a useful mathematical tool to plan the vaccination campaign aimed at eradicating the pandemic as fast as possible. The aim of this work is to explore the optimal prioritisation order for planning vaccination campaigns able to achieve specific goals, as the reduction of the amount of infected, deceased and hospitalized in a given time frame, among age classes. For this purpose, we introduce an age stratified SIR-like epidemic compartmental model settled in an abstract framework for modelling two-doses vaccination campaigns and conceived with the description of COVID19 disease. Compared to other recent works, our model incorporates all stages of the COVID-19 disease, including death or recovery, without accounting for additional specific compartments that would increase computational complexity and that are not relevant for our purposes. Moreover, we introduce an optimal control framework where the model is the state problem while the vaccine doses administered are the control variables. An extensive campaign of numerical tests, featured in the Italian scenario and calibrated on available data from Dipartimento di Protezione Civile Italiana, proves that the presented framework can be a valuable tool to support the planning of vaccination campaigns. Indeed, in each considered scenario, our optimization framework guarantees noticeable improvements in terms of reducing deceased, infected or hospitalized individuals with respect to the baseline vaccination policy.

13.
BMC Bioinformatics ; 24(1): 143, 2023 Apr 12.
Article En | MEDLINE | ID: mdl-37046208

BACKGROUND: Modeling the whole cardiac function involves the solution of several complex multi-physics and multi-scale models that are highly computationally demanding, which call for simpler yet accurate, high-performance computational tools. Despite the efforts made by several research groups, no software for whole-heart fully-coupled cardiac simulations in the scientific community has reached full maturity yet. RESULTS: In this work we present [Formula: see text]-fiber, an innovative tool for the generation of myocardial fibers based on Laplace-Dirichlet Rule-Based Methods, which are the essential building blocks for modeling the electrophysiological, mechanical and electromechanical cardiac function, from single-chamber to whole-heart simulations. [Formula: see text]-fiber is the first publicly released module for cardiac simulations based on [Formula: see text], an open-source, high-performance Finite Element solver for multi-physics, multi-scale and multi-domain problems developed in the framework of the iHEART project, which aims at making in silico experiments easily reproducible and accessible to a wide community of users, including those with a background in medicine or bio-engineering. CONCLUSIONS: The tool presented in this document is intended to provide the scientific community with a computational tool that incorporates general state of the art models and solvers for simulating the cardiac function within a high-performance framework that exposes a user- and developer-friendly interface. This report comes with an extensive technical and mathematical documentation to welcome new users to the core structure of [Formula: see text]-fiber and to provide them with a possible approach to include the generated cardiac fibers into more sophisticated computational pipelines. In the near future, more modules will be successively published either as pre-compiled binaries for x86-64 Linux systems or as open source software.


Medicine , Software , Myocytes, Cardiac , Computer Simulation
14.
Comput Methods Programs Biomed ; 231: 107402, 2023 Apr.
Article En | MEDLINE | ID: mdl-36773593

BACKGROUND AND OBJECTIVES: Parameter estimation and uncertainty quantification are crucial in computational cardiology, as they enable the construction of digital twins that faithfully replicate the behavior of physical patients. Many model parameters regarding cardiac electromechanics and cardiovascular hemodynamics need to be robustly fitted by starting from a few, possibly non-invasive, noisy observations. Moreover, short execution times and a small amount of computational resources are required for the effective clinical translation. METHODS: In the framework of Bayesian statistics, we combine Maximum a Posteriori estimation and Hamiltonian Monte Carlo to find an approximation of model parameters and their posterior distributions. Fast simulations and minimal memory requirements are achieved by using an accurate and geometry-specific Artificial Neural Network surrogate model for the cardiac function, matrix-free methods, automatic differentiation and automatic vectorization. Furthermore, we account for the surrogate modeling error and measurement error. RESULTS: We perform three different in silico test cases, ranging from the ventricular function to the entire cardiocirculatory system, involving whole-heart mechanics, arterial and venous hemodynamics. By employing a single central processing unit on a standard laptop, we attain highly accurate estimations for all model parameters in short computational times. Furthermore, we obtain posterior distributions that contain the true values inside the 90% credibility regions. CONCLUSIONS: Many model parameters regarding the entire cardiovascular system can be fastly and robustly identified with minimal hardware requirements. This can be achieved when a small amount of non-invasive data is available and when high levels of signal-to-noise ratio are present in the quantities of interest. With these features, our approach meets the requirements for clinical exploitation, while being compliant with Green Computing practices.


Heart , Neural Networks, Computer , Humans , Uncertainty , Bayes Theorem , Ventricular Function
15.
Vietnam J Math ; 51(1): 127-149, 2023.
Article En | MEDLINE | ID: mdl-36536831

In this work we study the blood dynamics in the pulmonary arteries by means of a 3D-0D geometric multiscale approach, where a detailed 3D model for the pulmonary arteries is coupled with a lumped parameters (0D) model of the cardiovascular system. We propose to investigate three strategies for the numerical solution of the 3D-0D coupled problem: the Splitting-Explicit and Implicit algorithms, where information are exchanged between 3D and 0D models at each time step at the interfaces, and the One-Way algorithm, where the 0D is solved first off-line. In our numerical experiments performed in a realistic patient-specific 3D domain with a physiologically calibrated 0D model, we discuss first the issue on instabilities that may arise when not suitable connections are considered between 3D and 0D models; second we compare the performance and accuracy of the three proposed numerical strategies. Finally, we report a comparison between a healthy and a hypertensive case, providing a preliminary result highlighting how our method could be used in future for clinical purposes.

16.
Int J Numer Method Biomed Eng ; 39(3): e3678, 2023 03.
Article En | MEDLINE | ID: mdl-36579792

We propose a mathematical and numerical model for the simulation of the heart function that couples cardiac electrophysiology, active and passive mechanics and hemodynamics, and includes reduced models for cardiac valves and the circulatory system. Our model accounts for the major feedback effects among the different processes that characterize the heart function, including electro-mechanical and mechano-electrical feedback as well as force-strain and force-velocity relationships. Moreover, it provides a three-dimensional representation of both the cardiac muscle and the hemodynamics, coupled in a fluid-structure interaction (FSI) model. By leveraging the multiphysics nature of the problem, we discretize it in time with a segregated electrophysiology-force generation-FSI approach, allowing for efficiency and flexibility in the numerical solution. We employ a monolithic approach for the numerical discretization of the FSI problem. We use finite elements for the spatial discretization of partial differential equations. We carry out a numerical simulation on a realistic human left heart model, obtaining results that are qualitatively and quantitatively in agreement with physiological ranges and medical images.


Electrophysiologic Techniques, Cardiac , Hydrodynamics , Humans , Models, Cardiovascular , Heart/physiology , Heart Valves/physiology , Computer Simulation , Myocardium
17.
Comput Biol Med ; 150: 106143, 2022 11.
Article En | MEDLINE | ID: mdl-36182758

We analyse the haemodynamics of the left atrium, highlighting differences between healthy individuals and patients affected by atrial fibrillation. The computational study is based on patient-specific geometries of the left atria to simulate blood flow dynamics. We design a novel procedure to compute the boundary data for the 3D haemodynamic simulations, which are particularly useful in absence of data from clinical measurements. With this aim, we introduce a parametric definition of atrial displacement, and we use a closed-loop lumped parameter model of the whole cardiovascular circulation conveniently tuned on the basis of the patient's characteristics. We evaluate several fluid dynamics indicators for atrial haemodynamics, validating our numerical results in terms of clinical measurements; we investigate the impact of geometric and clinical characteristics on the risk of thrombosis. To highlight the correlation of thrombus formation with atrial fibrillation, according to medical evidence, we propose a novel indicator: age stasis. It arises from the combination of Eulerian and Lagrangian quantities. This indicator identifies regions where slow flow cannot properly rinse the chamber, accumulating stale blood particles, and creating optimal conditions for clots formation.


Atrial Appendage , Atrial Fibrillation , Thrombosis , Humans , Hydrodynamics , Heart Atria/diagnostic imaging , Hemodynamics
18.
JACC Clin Electrophysiol ; 8(5): 561-577, 2022 05.
Article En | MEDLINE | ID: mdl-35589168

OBJECTIVES: This study aimed to evaluate the progression of electrophysiological phenomena in a cohort of patients with paroxysmal atrial fibrillation (PAF) and persistent atrial fibrillation (PsAF). BACKGROUND: Electrical remodeling has been conjectured to determine atrial fibrillation (AF) progression. METHODS: High-density electroanatomic maps during sinus rhythm of 20 patients with AF (10 PAF, 10 PsAF) were compared with 5 healthy control subjects (subjects undergoing ablation of a left-sided accessory pathway). A computational postprocessing of electroanatomic maps was performed to identify specific electrophysiological phenomena: slow conductions corridors, defined as discrete areas of conduction velocity <50 cm/s, and pivot points, defined as sites showing high wave-front curvature documented by a curl module >2.5 1/s. RESULTS: A progressive decrease of mean conduction velocity was recorded across the groups (111.6 ± 55.5 cm/s control subjects, 97.1 ± 56.3 cm/s PAF, and 84.7 ± 55.7 cm/s PsAF). The number and density of slow conduction corridors increase in parallel with the progression of AF (8.6 ± 2.2 control subjects, 13.3 ± 3.2 PAF, and 20.5 ± 4.5 PsAF). In PsAF the atrial substrate is characterized by a higher curvature of wave-front propagation (0.86 ± 0.71 1/s PsAF vs 0.74 ± 0.63 1/s PAF; P = 0.003) and higher number of pivot points (25.1 ± 13.8 PsAF vs 9.5 ± 6.7 PAF; P < 0.0001). Slow conductions: corridors were mostly associated with pivot sites tending to cluster around pulmonary veins antra. CONCLUSIONS: The electrical remodeling hinges mainly on corridors of slow conduction and higher curvature of wave-front propagation. Pivot points associated to SC corridors may be the major determinants for functional localized re-entrant circuits creating the substrate for maintenance of AF.


Atrial Fibrillation , Atrial Remodeling , Catheter Ablation , Pulmonary Veins , Atrial Fibrillation/surgery , Heart Atria , Humans , Pulmonary Veins/surgery
19.
Infect Dis Model ; 7(2): 45-63, 2022 Jun.
Article En | MEDLINE | ID: mdl-35284699

Several epidemiological models have been proposed to study the evolution of COVID-19 pandemic. In this paper, we propose an extension of the SUIHTER model, to analyse the COVID-19 spreading in Italy, which accounts for the vaccination campaign and the presence of new variants when they become dominant. In particular, the specific features of the variants (e.g. their increased transmission rate) and vaccines (e.g. their efficacy to prevent transmission, hospitalization and death) are modeled, based on clinical evidence. The new model is validated comparing its near-future forecast capabilities with other epidemiological models and exploring different scenario analyses.

20.
Comput Biol Med ; 142: 105203, 2022 03.
Article En | MEDLINE | ID: mdl-35033878

Mechano-electric feedbacks (MEFs), which model how mechanical stimuli are transduced into electrical signals, have received sparse investigation by considering electromechanical simulations in simplified scenarios. In this paper, we study the effects of different MEFs modeling choices for myocardial deformation and nonselective stretch-activated channels (SACs) in the monodomain equation. We perform numerical simulations during ventricular tachycardia (VT) by employing a biophysically detailed and anatomically accurate 3D electromechanical model for the left ventricle (LV) coupled with a 0D closed-loop model of the cardiocirculatory system. We model the electromechanical substrate responsible for scar-related VT with a distribution of infarct and peri-infarct zones. Our mathematical framework takes into account the hemodynamic effects of VT due to myocardial impairment and allows for the classification of their hemodynamic nature, which can be either stable or unstable. By combining electrophysiological, mechanical and hemodynamic models, we observe that all MEFs may alter the propagation of the transmembrane potential. In particular, we notice that the presence of myocardial deformation in the monodomain equation may change the VT basis cycle length and the conduction velocity but do not affect the hemodynamic nature of the VT. Finally, nonselective SACs may affect VT stability, by possibly turning a hemodynamically stable VT into a hemodynamically unstable one.


Cicatrix , Tachycardia, Ventricular , Arrhythmias, Cardiac , Feedback , Hemodynamics , Humans
...